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Abstract. A scaling rule has been proposed to study the energy spectrum of the Aubry 
model H = Z, [( V cos Qn)aLan + t(a',+,a, + a ~ - , a , , ) ]  for a class of irrational numbers 
Q = l / ( ~  + Q), where p is a positive integer. The scaling rule is universal in the sense 
that it is independent of the ratio V/r and has been confirmed via a large scale numerical 
calculation. A fractal dimensionality D, of the energy spectrum is defined and has been 
found to be D,= 1. 

Recently there has been considerable interest in the spectral structure of the one- 
dimensional Aubry model (Aubry 1978) 

where E (  Q, n) = V cos( Q 2 m ) ,  and Q is an irrational number. Many authors (Sokoloff 
1981a, Sokoloff and JosB 1982, Dy and Ma 1982, Suslov 1983, Llois et a1 1984, Dy 
and Wang 1984, Wiecko and Roman 1984, Weaire and Kermode 1983) have calculated 
the energy spectrum of H(Q) using various approaches. One novel feature of the 
spectrum is the existence of a hierarchy of subbands with decreasing bandwidths. This 
has been demonstrated under the name of either the devil's staircase, Cantor set, 
or hierarchical recursion by Azbel (1979), Sokoloff (1981b), Bellissard e? a1 (1982), 
Bellissard and Simon (1982), Azbel and Rubinstein (1983), de Lange and Janssen 
(1983) and Chao e? a1 (1985). The application of scaling theory by Suslov (1982), 
Thouless and Niu (1983), Kohmoto (1983) and Ostlund and Pandit (1984), together 
with the so-obtained empirical scaling results have revealed some detailed structures 
of the eigensolutions of the model Hamiltonian. 

The irrational number Q can be expressed as a continued fraction 

1 
Q = [Pl, Pz, P3, * ' .I = 

1 ,  
P1+ 1 

I 

P2+- 
p3+. . . 

where pi are positive integers. Azbel (1964a, b, 1979) predicted that the spectrum splits 
into (approximately) p1 bands, each of which splits into p2 subbands, each of which 
splits into p3 subbands, etc. If one truncates the continued fraction, Q can be 
approximated by a rational number Q = v /  N, where Y and N are integers. Under this 
approximation the energy spectrum splits into N bands and each band contains the 
same number of eigenstates. Such spectra were studied by Hofstadter (1976) and 
Wilkinson (1984). 
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In this comment we will consider a special class of quadratic irrational numbers 
{ Q ( p ) ;  p = 1,2, .  . .} defined as 

For given p there are two solutions Q+>O and Q-<O. Since Q++Q-=p and 
E (  Q, n )  = V cos( Q27rn) ,  the spectra of H (  Q+) and H (  Q- = p - Q+) (or H (  1 - Q+)) 
are identical. Hence, the spectra of H (  Q) are symmetric with respect to Q = 0.5. For 
this class of Q, we propose a scaling hypothesis to demonstrate the fractal (or self- 
similar) properties of the energy spectra of H ( Q ) .  If the total number of eigenstates 
is N, ( Nt can be arbitrarily large), and we use Q"N, (with 7 = 0,1,2, . . .) as a scale 
to measure the number of eigenstates in each subband, we can derive a fractal (or 
self-similar) pattern of band splitting. The scaling hypothesis is universal in the sense 
that it is valid as long as 2t > V. 

Before we study the case of integer p, it is helpful to consider Q = 0 (or p = 00) first, 
corresponding to a periodic system with period 1. The energy spectrum is just a single 
tight-binding band. From 

E ( Q ,  n ) =  E(' n )  = VCOS(=) 
P + Q '  P + Q  

the case Q = 0 can also be interpreted as a splitting of the original single energy band 
into p (+CO) subbands and each subband contains only one eigenenergy. Next, we 
consider the case that p is not an integer and Q # 0, but Q is a rational number v /  N. 
One simple example is p = 2.1 and Q = 0.4 = g. In this case the system is also periodic 
with a superperiodicity N, and the original single energy band splits into N subbands. 
The number of eigenstates in each subband is equal to 1 / N  of the total number of 
eigenstates. 

For the case of integer p to be investigated in this comment, the expression 
E (  Q, n) = E ( 2 m / ( p  + Q)) suggests the following ansatz. The original single energy 
band corresponding to p = 00 splits into p + 1 subbands when p takes the value of a 
finite positive integer. Among them, p subbands are equivalent in the sense that an 
equal fraction f, = l / (p  + Q )  = Q of the total number of eigenstates is contained in 
each of these p subbands. The remaining non-equivalent subband contains a fraction 
f, = 1 - pf, = 1 - pQ of the total number of eigenstates. From (3)  we have 1 - pQ = Q2, 
and so f , / f S =  Q. Consequently, if we use NT (total number of eigenstates of the 
system) as a scale to measure the number of eigenstates in each band, we simply obtain 
the original single energy band. Then, if we use QNT as a scale to measure the number 
of eigenstates in each band, we expect the original single band splitting into p + 1 
subbands. It is important to point out that Azbel (1964a, b, 1979) predicted only p 
subbands. If we approximate the irrational Q by the rational number l /p  (the crudest 
approximation), we also get p subbands. We will return to this point later. 

Before we generalise the results by applying the ansatz again to each subband, we 
first have to satisfy the symmetry requirement. The spectrum of eigenenergy E of the 
Hamiltonian H (  Q )  is symmetric with respect to E = 0. If p is even, the symmetry is 
satisfied with the non-equivalent subband located at the centre of the spectrum, and 
the p equivalent subbands symmetrically placed at both sides of the non-equivalent 
subband. Therefore, for even p we can apply the ansatz again to each subband. Now 
we will display an equation for the scaling assumption for even integer p. At the nth 
stage of band splitting, the number of eigenstates in each subband is either N,Q" or 
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N,Q"+l, where N, is the total number of eigenstates of the system. Let a,  (or P, )  be 
the number of subbands containing N,Q" (or NtQnf') eigenstates at the nth stage. 
At the next stage ofband splitting, there are (or Pn+l)  subbands containing NtQ"+' 
(or NtQ"+') eigenstates. The recursion relation between (U,+,, and (a,,, P , )  can 
be derived. For example, if p is even, we have 

with a,,= 1 and po=O.  If we denote x =  N,Q" as the independent variable, then 
a ( x )  = a,  and p ( x )  = Pn are functions of x. Equation (4) can be rewritten as 

. ( x ) = ( 1 / Q - Q ) . ( x / Q ) + P ( x / Q )  ( 5 a )  

P(x)  = .(X/Q) (5b)  

.(XI = ( I /  Q - Q)a(x /  0) + .(x/ 0') ( 6 a )  

P ( x )  = (1/Q - Q)P(x/Q)  +P(X/Q'). ( 6 6 )  

and 

or simply 

and 

For odd p, we have to treat p = 1 and p 3 3 separately. If p 3 3, we must have 
both the non-equivalent subband and one of the p equivalent subbands located around 
E = 0 and overlapping each other. The overall middle subband thus contains a fraction 
fs + fm = Q + Q2 of the total number of eigenstates. When this resultant middle subband 
splits again, the equivalent subband component produces p equivalent subbands and 
one non-equivalent subband. Each of these newly appearing p equivalent subbands 
contains a fraction fif, = Q' of the total number of eigenstates, while the newly 
appearing non-equivalent subband contains only a fraction f, fm = Q' of the total 
number of eigenstates. At this stage, the resultant middle subband can be well separated 
into p + 1 equivalent subbands, each with a fraction factor Q2,  and one non-equivalent 
subband with the fraction factor Q'. The non-equivalent subband will stay at the 
middle and the p + 1 equivalent subbands stay symmetrically at both sides. Now, we 
can continue to apply the ansatz to all subbands. The scaling assumption can be 
expressed in similar equations 

.(XI = ( 1 1 ~ -  Q -  i ) a ( x / ~ ) + ( i / ~ -  Q + ~ ) ~ ( x / Q ~ ) + ~ ( x / Q ~ )  ( 7 4  
and 

P ( x ) =  (1/Q - 0 - l ) P ( x / Q ) +  (1/Q - Q+ 1)P(x/Q2)+P(x/Q3) .  ( 7 b )  
For p = 1 one can imagine that the original single energy band actually consists of 

two overlapping subbands. Both subbands are symmetrically located around E = 0. 
The fraction factor of one subband is Q and the fraction factor of the other is 0'. 
Therefore, at the first step of subband identification, the original single energy band 
can be well separated into p + 1 = 2 equivalent subbands with fraction factor Q2 each 
and one non-equivalent subband with fraction factor Q'. Again, the non-equivalent 
subband stays at the centre around E = 0. From now on, each equivalent subband will 
split into two subbands with relative fraction factors Q and Q'. On the other hand, 
the central non-equivalent subband starts to play the role of the original single energy 
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band and will split into p + 1 = 2 equivalent subbands plus one central non-equivalent 
subband. The equation for scaling assumption can be derived without difficulty, though 
it is a little more complicated than the cases p # 1. 

If the above scaling hypothesis is correct, when a parent band splits into subbands 
with predicted partition of number of eigenstates, these subbands must be well separated 
by energy gaps. Furthermore, if we analyse only one of the subbands each time and 
continue the process step by step, not only should the pattern of band splitting be 
correct, it should also exhibit a hierarchical structure of monotonically decreasing 
bandgaps. In other words, starting from any subband, the application of the scaling 
hypothesis should reproduce the entire band structure of the whole system. From the 
following numerical experiment, we see that the energy spectrum indeed has this fractal 
(or self-similar) property. 

We should point out that the above scaling hypothesis is independent of the ratio 
V/2t. Since Aubry and Andre (1980) have shown that all eigenstates of H ( Q )  are 
localised if 2t < V,  we hesitate to apply the concept of energy band in this region. 
Therefore, we will restrict our scaling hypothesis to the region 2t 3 V only. For given 
values of 2t/ V s  1 and integer I*, we have used the so-called negative-eigenvalue- 
counting method (Martin 1961) to calculate the number of eigenstates in a given energy 
interval AE.  A E  is reduced step by step in order to detect the formation of subbands. 
The numerical accuracy is 

We have studied the cases p = 1, 2, 3, 4, 5, 6, and five randomly chosen values of 
p between p = 7 and p = 20. For every value of p, we have considered twenty values 
of V/t = O.lm with m = 1, 2, . . . , 20. In every case the band splitting follows our 
proposed scaling hypothesis. Here we show in figure 1 only the results of the first few 
splittings for 2t/ V =  1 and p = 1, 2 and 3. Each subband is represented by a vertical 
bar with both band edges marked by numbers. Because of the symmetry, only the 
part of the spectrum with positive eigenenergies is plotted. When a band splits into 
subbands, the relative fraction factors (1, Q or 1 - Q) of numbers of eigenstates in 
these subbands are indicated next to the bars. The fractal (or self-similar) structure 
of the spectrum is clearly seen in figure 1. In particular, we would like to point out 
that at any stage of band splitting, the original band edges (and the original bandgaps) 
do not change at all. Therefore, the spectrum has a hierarchical feature of monotonically 
decreasing bandgaps as predicted by the scaling hypothesis. With decreasing V/2t, 
we found that the fractal structure of the spectrum remains intact, but every bandgap 
gets narrower. At V/2t = 0, all bandgaps disappear. 

there is at least one eigenstate in an energy 
interval A E  = Hence, we have to compute the energy spectrum of a chain of 
about lo6 atoms. For given values of p and V/2t, it takes about 45 min of CPU time 
to calculate the spectrum on a VAX 780 computer. We have checked 11 different 
values of p and 20 different values of V/2t. The whole numerical work took about 
160 h CPU time. 

Recently, the fractal dimensionality has been extensively studied from the topologi- 
cal point of view (Mandelbrot 1977). In the theory of fractal dimensionality, the two 
quantities which play the fundamental roles are the scale of measurement and the 
number of units measured with the scale. To my knowledge the concept of a fractal 
has not been generalised and applied to energy spectra. In our calculation to detect 
the band splitting, we reduce the scale of measuring the number of eigenstates by a 
factor Q, and then count the increase of the number of subbands. Therefore, we can 
use the scaling hypothesis to define the fractal dimensionality of the energy spectrum 

With the numerical accuracy 
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Figure 1. The fractal (or scaling) properties of the energy spectra for various values of p 
and 2 t /  V = 1. 

as 

Df= log[(a(Qx) + P(Qx)) (a(x)  + P ( x ) ) - ' I / ~ w ( ~ / Q ) .  (8) 

From equations ( 6 4  b )  and (7a, b )  it is easy to show that Df= 1. It can also be proved 
without difficulty that Df = 1 for p = 1. 

A generalisation of the scaling is to consider the cases 

Q=-[-p , - p  , - P , . . . I = ~ / ( P - - Q Q )  (9) 

and 
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The results are very complicated due to the overlap of subbands and will not be 
discussed here. 

To close this comment, we would like to remark on the approximation in which 
the irrational Q is approximated by a rational number v / N .  Within this approximation, 
the original single energy band always splits into N (and only N)subbands, and each 
subband contains an equal number of eigenstates. The fractal structure of the spectrum 
is then quite different from what we have derived for the class of Q defined by (3), 
although within this approximation the fractal dimensionality of the spectrum is still 
D f =  1. 

This work was supported by the Swedish Natural Science Research Council under 
Grant No NFR-FFU-3996-121. 
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